intersection at %.3f %.3f trying to delete a non-line �������samplepointsboxpolygonmakeAddPoly: unknown shape type %s makePoly: unknown shape type %s �?�this next prev point%3d %3d %3d (%f,%f) %4.1f ill-conditionedneatosplines.cb == nspline %s %s line segmentsorthogonal linespolylinessplinesCreating edges using %s polyline %s %s makeSpline: failed to make spline edge (%s,%s) the bounding boxes of some nodes touch - falling back to straight line edges some nodes with margin (%.02f,%.02f) touch - falling back to straight line edges make_barriers{�G�z�?bad edge len "%s" in %s - setting to %.02f Scanning graph %s, %d nodes epsilonDampingdefaultdistSetting initial positions Setting up spring model: iterations = %d final e = %f %.3f %s %.3f
final e = %f %d%s iterations %.2f sec stuff.cND_heapindex(v) < 0Calculating shortest paths: start=%s not supported with mode=self - ignored Max. iterations (%d) reached on graph %s neato_enqueue-C��6?�G�z��?mdsModel: delta = %f Calculating subset modelCalculating MDS modelCalculating shortest paths: %.2f sec Setting initial positions: %.2f secSetting up stress functionSolving model: graph is disconnected. Hence, the circuit model
final e = %f %d iterations %.2f sec ���KH�9����MbP?���ư>���?���d~�Q�+����?@Y>)���I�conjugate_gradient: unexpected length 0 vector cgconstraint.cdelta <= 0xFFFFvgcompress %g bestcost < HUGE_VALscale by %g,%g �n��o��3p���o���p��Xp��Go��tp��computeScaleXYmkNConstraintG$@� A�@@zD(kn�(knNsmart_ini_x.cx!=NULLIMDS_given_dim�h㈵��>�������?remove_overlap: Graphviz not built with triangulation library Graphviz built without any triangulation library get_triangles: %s delaunay_triangulation: %s delaunay_tri: %s mkSurface: %s freeSurface: %s multispline.cHeap overflow @��������@����������������X��������(��edgeToSegfindMapaddEndpointCould not create control points for multiple spline for edge (%s,%s) @@.@Y@���nsizescale=%f,iterations=%d generated %d constraints levels: l[%d]:%d Found %d DiG-CoLa boundaries generate edge constraints... initCMajVPSC done: %d global constraints generated. q���h�?rootspecified root node "%s" was not found.Using default calculation for root node ranksepRank separation = %.03lf root = %s max steps to root = %d twopi: use of weight=0 creates disconnected component. {�G�z�?rec %f %f %f %f %.03fareainset%f - %f %f %f %f = %f (%f %f %f %f) %s coord %.5g %.5g ht %f width %f @ffffff�?@�@shapetrying to add to rect {%f +/- %f, %f +/- %f} adding %d items, total area = %f, w = %f, area/w=%f total added so far = %d layout %s sortv%s : %f %f %f %f %s : %f %f reposition %s Graph %s has array packing with user values but no "sortv" attributes are defined.�����A����������2@cc%s_%dcc%s+%dcomp.cc_cnt == 0findCCompgrid(%d,%d): %s Warning: node %s, position %s, expected two floats _dg_%dderive graph %s of %s derived%lf,%lf,%lf,%lf%c_port_%s_%s_%s_%ld_port_%s_(%d)_(%d)_%ldlayout.ci == degidx == szend %s coordswidthheightgraph %s, coord %s, expected four doubles node "%s" is contained in two non-comparable clusters "%s" and "%s" splines and cluster edges not supported - using line segments getEdgeListexpandCluster9�R�Fߡ?T0%s: (%f,%f) (%f,%f) max delta = %f %s -- %s (%f) fdp does not support start=self - ignoring ffffff�?333333�?@333333�?\��(\�?�������?0C�������(%s)9:prismxLayout tries = %d, mode = %s compoundEdges: could not construct obstacles - falling back to straight line edges compoundEdges: nodes touch - falling back to straight line edges pack value %d is smaller than esep (%.03f,%.03f) sep value (%.03f,%.03f) is smaller than esep (%.03f,%.03f) SparseMatrix.cA->format == FORMAT_CSRheap_ids[root] >= 0ndata->id == jj%s SparseArray[{{%d, %d}->%f{%d, %d}->%f + %f I{%d, %d}->%d{%d, %d}->_},{%d, %d}] A->format == FORMAT_COORDwbrb%d %d %d %d %d %16.8g %d %d %16.8g %16.8g A->type == B->typeA->type == MATRIX_TYPE_REALjc[mask[jb[k]]] == jb[k]jd[mask[jc[k]]] == jc[k]ja[mask[ja[j]]] == ja[j]id < n*(ymax-ymin+1)ja[mask[id]] == ja[j]m > 0 && n > 0 && nz >= 0Aroot >= 0 && root < mroot == list[0]nlist > 0A->size != 0 && nz > 0old2new[ja[i]] >= 0levelset_ptr[nlevel] == nnlist == n!flagnlevel-1 <= khopsmask[levelset[j]] == i+1A->m == nteleport_probablity >= 0���������������������������'��, ��l��'��\��'��'��'�����'��'��'��'��'��'��'�����\<��|=���>��\<���?��\<��\<��\<���<��\<��\<��\<��\<��\<��\<��\<��\<��<���@���@��<���@��<��<��<���@��<��<��<��<��<��<��<��<��SparseMatrix_page_rankSparseMatrix_distance_matrix_khopsSparseMatrix_distance_matrix_k_centersSparseMatrix_distance_matrixSparseMatrix_k_centers_userSparseMatrix_k_centersSparseMatrix_complementSparseMatrix_delete_sparse_columnsSparseMatrix_to_square_matrixSparseMatrix_get_augmentedSparseMatrix_pseudo_diameter_unweightedDijkstra_internalSparseMatrix_pseudo_diameter_weightedSparseMatrix_level_sets_internalSparseMatrix_divide_row_by_degreeSparseMatrix_coordinate_form_add_entriesSparseMatrix_sum_repeat_entriesSparseMatrix_multiply3SparseMatrix_multiplySparseMatrix_multiply_by_scalerSparseMatrix_scaled_by_vectorSparseMatrix_multiply_vectorSparseMatrix_multiply_dense2SparseMatrix_multiply_dense1SparseMatrix_addSparseMatrix_from_coordinate_arrays_internalSparseMatrix_from_coordinate_format_not_compactedSparseMatrix_from_coordinate_formatSparseMatrix_exportSparseMatrix_printSparseMatrix_print_coordSparseMatrix_print_csrSparseMatrix_is_symmetricSparseMatrix_transposeSparseMatrix_is_symmetric(A, TRUE)%%%%MatrixMarket matrix coordinate real general %%%%MatrixMarket matrix coordinate complex general %%%%MatrixMarket matrix coordinate integer general %%%%MatrixMarket matrix coordinate pattern general A->format == B->format && A->format == FORMAT_CSRA->type == MATRIX_TYPE_REAL || A->type == MATRIX_TYPE_INTEGERwarning: scaling of matrix this type is not supported dist[list[nlist-1]] == dist_max(dist_max - dist0)/MAX(1, MAX(ABS(dist0), ABS(dist_max))) < 1.e-10search for diameter again from root=%d after aggressive search for diameter, diam = %f, ends = {%d,%d} page rank iter -- %d, res = %f H�����z>H�����z���7y�AC��ؗ�Ҝ<general.cn > 1%s{p[i] < n && p[i] >= 0vector_float_takevector_takeirandV瞯�<BinaryHeap.cparentPos < h->lennodePos < h->lenh->id_to_pos[id] == posh->pos_to_id[pos] == idpos < h->lenh->id_to_pos[key_spare] < 0mask[pos_to_id[i]] == -1id_to_pos[pos_to_id[i]] == i Spare keys =%d(%d) (h->cmp)(heap[i], heap[parentPos]) >= 0BinaryHeap_sanity_checkBinaryHeap_extract_itemswapBinaryHeap_insert�������?%d,%d %s DotIO.c#%02x%02x%02xnodeinfoFormat %d not supported *xNode "%s" lacks position info%6.2f%% done writing a total of %d edges w%f stdin. nodes, edges.#808090fontcolorblackbgcoloredgesfirstoutputorderinvisstyle0.03filled#FF0000#000000falseheadcliptailclipsetlinewidth(2)setlinewidth(0.5)setlinewidth(0.1)setlinewidth(0.0)%stest\Nellipse0.000010.0.5arrowsize|edgelabelplaintextclustercolor HERE! fontsizecan only 1, 2 or 3 dimensional color space. with color value between 0 to 1 Node "%s" pos has %d < 2 valuesNode "%s" pos has %d < 3 valuesNode "%s" pos has %d < 4 valuesError: graph %s has missing "pos" informationWarning: node %s appears in multiple clusters. no complement clustering info in dot file, using modularity clustering. Modularity = %f, ncluster=%d WARNING: pos field missing for node %d, set to origin =�������������9���U���ɥ�����q�������!���attached_clusteringImport_coord_clusters_from_dotSparseMatrix_import_dotcolor_string�o@[@�������?;@0123456789abcdefC@@UUUUUU�?UUUUUU�?rgblabgray#%02X%02X%02Xaccent3#7fc97f,#beaed4,#fdc086accent4accent5accent6accent7accent8blues3#deebf7,#9ecae1,#3182bdblues4blues5blues6blues7blues8blues9brbg10brbg11brbg3#d8b365,#f5f5f5,#5ab4acbrbg4brbg5brbg6brbg7brbg8brbg9#e5f5f9,#99d8c9,#2ca25fbupu3#e0ecf4,#9ebcda,#8856a7bupu4bupu5bupu6bupu7bupu8bupu9dark23#1b9e77,#d95f02,#7570b3dark24dark25dark26dark27dark28#e0f3db,#a8ddb5,#43a2cagreens3#e5f5e0,#a1d99b,#31a354greens4greens5greens6greens7greens8greens9greys3#f0f0f0,#bdbdbd,#636363greys4greys5greys6greys7greys8greys9oranges3#fee6ce,#fdae6b,#e6550doranges4oranges5oranges6oranges7oranges8oranges9#fee8c8,#fdbb84,#e34a33paired10paired11paired12paired3#a6cee3,#1f78b4,#b2df8apaired4paired5paired6paired7paired8paired9pastel13#fbb4ae,#b3cde3,#ccebc5pastel14pastel15pastel16pastel17pastel18pastel19pastel23#b3e2cd,#fdcdac,#cbd5e8pastel24pastel25pastel26pastel27pastel28piyg10piyg11piyg3#e9a3c9,#f7f7f7,#a1d76apiyg4piyg5piyg6piyg7piyg8piyg9prgn10prgn11prgn3#af8dc3,#f7f7f7,#7fbf7bprgn4prgn5prgn6prgn7prgn8prgn9pubu3#ece7f2,#a6bddb,#2b8cbepubu4pubu5pubu6pubu7pubu8pubu9pubugn3#ece2f0,#a6bddb,#1c9099pubugn4pubugn5pubugn6pubugn7pubugn8pubugn9puor10puor11puor3#f1a340,#f7f7f7,#998ec3puor4puor5puor6puor7puor8puor9purd3#e7e1ef,#c994c7,#dd1c77purd4purd5purd6purd7purd8purd9purples3#efedf5,#bcbddc,#756bb1purples4purples5purples6purples7purples8purples9rdbu10rdbu11rdbu3#ef8a62,#f7f7f7,#67a9cfrdbu4rdbu5rdbu6rdbu7rdbu8rdbu9rdgy10rdgy11rdgy3#ef8a62,#ffffff,#999999rdgy4rdgy5rdgy6rdgy7rdgy8rdgy9rdpu3#fde0dd,#fa9fb5,#c51b8ardpu4rdpu5rdpu6rdpu7rdpu8rdpu9rdylbu10rdylbu11rdylbu3#fc8d59,#ffffbf,#91bfdbrdylbu4rdylbu5rdylbu6rdylbu7rdylbu8rdylbu9rdylgn10rdylgn11rdylgn3#fc8d59,#ffffbf,#91cf60rdylgn4rdylgn5rdylgn6rdylgn7rdylgn8rdylgn9reds3#fee0d2,#fc9272,#de2d26reds4reds5reds6reds7reds8reds9set13#e41a1c,#377eb8,#4daf4aset14set15set16set17set18set19set23#66c2a5,#fc8d62,#8da0cbset24set25set26set27set28set310set311set312set33#8dd3c7,#ffffb3,#bebadaset34set35set36set37set38set39spectral10spectral11spectral3#fc8d59,#ffffbf,#99d594spectral4spectral5spectral6spectral7spectral8spectral9#f7fcb9,#addd8e,#31a354ylgnbu3#edf8b1,#7fcdbb,#2c7fb8ylgnbu4ylgnbu5ylgnbu6ylgnbu7ylgnbu8ylgnbu9ylorbr3#fff7bc,#fec44f,#d95f0eylorbr4ylorbr5ylorbr6ylorbr7ylorbr8ylorbr9ylorrd3#ffeda0,#feb24c,#f03b20ylorrd4ylorrd5ylorrd6ylorrd7ylorrd8ylorrd9#7fc97f,#beaed4,#fdc086,#ffff99#7fc97f,#beaed4,#fdc086,#ffff99,#386cb0#7fc97f,#beaed4,#fdc086,#ffff99,#386cb0,#f0027f#7fc97f,#beaed4,#fdc086,#ffff99,#386cb0,#f0027f,#bf5b17#7fc97f,#beaed4,#fdc086,#ffff99,#386cb0,#f0027f,#bf5b17,#666666#eff3ff,#bdd7e7,#6baed6,#2171b5#eff3ff,#bdd7e7,#6baed6,#3182bd,#08519c#eff3ff,#c6dbef,#9ecae1,#6baed6,#3182bd,#08519c#eff3ff,#c6dbef,#9ecae1,#6baed6,#4292c6,#2171b5,#084594#f7fbff,#deebf7,#c6dbef,#9ecae1,#6baed6,#4292c6,#2171b5,#084594#f7fbff,#deebf7,#c6dbef,#9ecae1,#6baed6,#4292c6,#2171b5,#08519c,#08306b#543005,#8c510a,#bf812d,#dfc27d,#f6e8c3,#c7eae5,#80cdc1,#35978f,#01665e,#003c30#543005,#8c510a,#bf812d,#dfc27d,#f6e8c3,#f5f5f5,#c7eae5,#80cdc1,#35978f,#01665e,#003c30#a6611a,#dfc27d,#80cdc1,#018571#a6611a,#dfc27d,#f5f5f5,#80cdc1,#018571#8c510a,#d8b365,#f6e8c3,#c7eae5,#5ab4ac,#01665e#8c510a,#d8b365,#f6e8c3,#f5f5f5,#c7eae5,#5ab4ac,#01665e#8c510a,#bf812d,#dfc27d,#f6e8c3,#c7eae5,#80cdc1,#35978f,#01665e#8c510a,#bf812d,#dfc27d,#f6e8c3,#f5f5f5,#c7eae5,#80cdc1,#35978f,#01665e#edf8fb,#b2e2e2,#66c2a4,#238b45#edf8fb,#b2e2e2,#66c2a4,#2ca25f,#006d2c#edf8fb,#ccece6,#99d8c9,#66c2a4,#2ca25f,#006d2c#edf8fb,#ccece6,#99d8c9,#66c2a4,#41ae76,#238b45,#005824#f7fcfd,#e5f5f9,#ccece6,#99d8c9,#66c2a4,#41ae76,#238b45,#005824#f7fcfd,#e5f5f9,#ccece6,#99d8c9,#66c2a4,#41ae76,#238b45,#006d2c,#00441b#edf8fb,#b3cde3,#8c96c6,#88419d#edf8fb,#b3cde3,#8c96c6,#8856a7,#810f7c#edf8fb,#bfd3e6,#9ebcda,#8c96c6,#8856a7,#810f7c#edf8fb,#bfd3e6,#9ebcda,#8c96c6,#8c6bb1,#88419d,#6e016b#f7fcfd,#e0ecf4,#bfd3e6,#9ebcda,#8c96c6,#8c6bb1,#88419d,#6e016b#f7fcfd,#e0ecf4,#bfd3e6,#9ebcda,#8c96c6,#8c6bb1,#88419d,#810f7c,#4d004b#1b9e77,#d95f02,#7570b3,#e7298a#1b9e77,#d95f02,#7570b3,#e7298a,#66a61e#1b9e77,#d95f02,#7570b3,#e7298a,#66a61e,#e6ab02#1b9e77,#d95f02,#7570b3,#e7298a,#66a61e,#e6ab02,#a6761d#1b9e77,#d95f02,#7570b3,#e7298a,#66a61e,#e6ab02,#a6761d,#666666#f0f9e8,#bae4bc,#7bccc4,#2b8cbe#f0f9e8,#bae4bc,#7bccc4,#43a2ca,#0868ac#f0f9e8,#ccebc5,#a8ddb5,#7bccc4,#43a2ca,#0868ac#f0f9e8,#ccebc5,#a8ddb5,#7bccc4,#4eb3d3,#2b8cbe,#08589e#f7fcf0,#e0f3db,#ccebc5,#a8ddb5,#7bccc4,#4eb3d3,#2b8cbe,#08589e#f7fcf0,#e0f3db,#ccebc5,#a8ddb5,#7bccc4,#4eb3d3,#2b8cbe,#0868ac,#084081#edf8e9,#bae4b3,#74c476,#238b45#edf8e9,#bae4b3,#74c476,#31a354,#006d2c#edf8e9,#c7e9c0,#a1d99b,#74c476,#31a354,#006d2c#edf8e9,#c7e9c0,#a1d99b,#74c476,#41ab5d,#238b45,#005a32#f7fcf5,#e5f5e0,#c7e9c0,#a1d99b,#74c476,#41ab5d,#238b45,#005a32#f7fcf5,#e5f5e0,#c7e9c0,#a1d99b,#74c476,#41ab5d,#238b45,#006d2c,#00441b#f7f7f7,#cccccc,#969696,#525252#f7f7f7,#cccccc,#969696,#636363,#252525#f7f7f7,#d9d9d9,#bdbdbd,#969696,#636363,#252525#f7f7f7,#d9d9d9,#bdbdbd,#969696,#737373,#525252,#252525#ffffff,#f0f0f0,#d9d9d9,#bdbdbd,#969696,#737373,#525252,#252525#ffffff,#f0f0f0,#d9d9d9,#bdbdbd,#969696,#737373,#525252,#252525,#000000#feedde,#fdbe85,#fd8d3c,#d94701#feedde,#fdbe85,#fd8d3c,#e6550d,#a63603#feedde,#fdd0a2,#fdae6b,#fd8d3c,#e6550d,#a63603#feedde,#fdd0a2,#fdae6b,#fd8d3c,#f16913,#d94801,#8c2d04#fff5eb,#fee6ce,#fdd0a2,#fdae6b,#fd8d3c,#f16913,#d94801,#8c2d04#fff5eb,#fee6ce,#fdd0a2,#fdae6b,#fd8d3c,#f16913,#d94801,#a63603,#7f2704#fef0d9,#fdcc8a,#fc8d59,#d7301f#fef0d9,#fdcc8a,#fc8d59,#e34a33,#b30000#fef0d9,#fdd49e,#fdbb84,#fc8d59,#e34a33,#b30000#fef0d9,#fdd49e,#fdbb84,#fc8d59,#ef6548,#d7301f,#990000#fff7ec,#fee8c8,#fdd49e,#fdbb84,#fc8d59,#ef6548,#d7301f,#990000#fff7ec,#fee8c8,#fdd49e,#fdbb84,#fc8d59,#ef6548,#d7301f,#b30000,#7f0000#a6cee3,#1f78b4,#b2df8a,#33a02c,#fb9a99,#e31a1c,#fdbf6f,#ff7f00,#cab2d6,#6a3d9a#a6cee3,#1f78b4,#b2df8a,#33a02c,#fb9a99,#e31a1c,#fdbf6f,#ff7f00,#cab2d6,#6a3d9a,#ffff99#a6cee3,#1f78b4,#b2df8a,#33a02c,#fb9a99,#e31a1c,#fdbf6f,#ff7f00,#cab2d6,#6a3d9a,#ffff99,#b15928#a6cee3,#1f78b4,#b2df8a,#33a02c#a6cee3,#1f78b4,#b2df8a,#33a02c,#fb9a99#a6cee3,#1f78b4,#b2df8a,#33a02c,#fb9a99,#e31a1c#a6cee3,#1f78b4,#b2df8a,#33a02c,#fb9a99,#e31a1c,#fdbf6f#a6cee3,#1f78b4,#b2df8a,#33a02c,#fb9a99,#e31a1c,#fdbf6f,#ff7f00#a6cee3,#1f78b4,#b2df8a,#33a02c,#fb9a99,#e31a1c,#fdbf6f,#ff7f00,#cab2d6#fbb4ae,#b3cde3,#ccebc5,#decbe4#fbb4ae,#b3cde3,#ccebc5,#decbe4,#fed9a6#fbb4ae,#b3cde3,#ccebc5,#decbe4,#fed9a6,#ffffcc#fbb4ae,#b3cde3,#ccebc5,#decbe4,#fed9a6,#ffffcc,#e5d8bd#fbb4ae,#b3cde3,#ccebc5,#decbe4,#fed9a6,#ffffcc,#e5d8bd,#fddaec#fbb4ae,#b3cde3,#ccebc5,#decbe4,#fed9a6,#ffffcc,#e5d8bd,#fddaec,#f2f2f2#b3e2cd,#fdcdac,#cbd5e8,#f4cae4#b3e2cd,#fdcdac,#cbd5e8,#f4cae4,#e6f5c9#b3e2cd,#fdcdac,#cbd5e8,#f4cae4,#e6f5c9,#fff2ae#b3e2cd,#fdcdac,#cbd5e8,#f4cae4,#e6f5c9,#fff2ae,#f1e2cc#b3e2cd,#fdcdac,#cbd5e8,#f4cae4,#e6f5c9,#fff2ae,#f1e2cc,#cccccc#8e0152,#c51b7d,#de77ae,#f1b6da,#fde0ef,#e6f5d0,#b8e186,#7fbc41,#4d9221,#276419#8e0152,#c51b7d,#de77ae,#f1b6da,#fde0ef,#f7f7f7,#e6f5d0,#b8e186,#7fbc41,#4d9221,#276419#d01c8b,#f1b6da,#b8e186,#4dac26#d01c8b,#f1b6da,#f7f7f7,#b8e186,#4dac26#c51b7d,#e9a3c9,#fde0ef,#e6f5d0,#a1d76a,#4d9221#c51b7d,#e9a3c9,#fde0ef,#f7f7f7,#e6f5d0,#a1d76a,#4d9221#c51b7d,#de77ae,#f1b6da,#fde0ef,#e6f5d0,#b8e186,#7fbc41,#4d9221#c51b7d,#de77ae,#f1b6da,#fde0ef,#f7f7f7,#e6f5d0,#b8e186,#7fbc41,#4d9221#40004b,#762a83,#9970ab,#c2a5cf,#e7d4e8,#d9f0d3,#a6dba0,#5aae61,#1b7837,#00441b#40004b,#762a83,#9970ab,#c2a5cf,#e7d4e8,#f7f7f7,#d9f0d3,#a6dba0,#5aae61,#1b7837,#00441b#7b3294,#c2a5cf,#a6dba0,#008837#7b3294,#c2a5cf,#f7f7f7,#a6dba0,#008837#762a83,#af8dc3,#e7d4e8,#d9f0d3,#7fbf7b,#1b7837#762a83,#af8dc3,#e7d4e8,#f7f7f7,#d9f0d3,#7fbf7b,#1b7837#762a83,#9970ab,#c2a5cf,#e7d4e8,#d9f0d3,#a6dba0,#5aae61,#1b7837#762a83,#9970ab,#c2a5cf,#e7d4e8,#f7f7f7,#d9f0d3,#a6dba0,#5aae61,#1b7837#f1eef6,#bdc9e1,#74a9cf,#0570b0#f1eef6,#bdc9e1,#74a9cf,#2b8cbe,#045a8d#f1eef6,#d0d1e6,#a6bddb,#74a9cf,#2b8cbe,#045a8d#f1eef6,#d0d1e6,#a6bddb,#74a9cf,#3690c0,#0570b0,#034e7b#fff7fb,#ece7f2,#d0d1e6,#a6bddb,#74a9cf,#3690c0,#0570b0,#034e7b#fff7fb,#ece7f2,#d0d1e6,#a6bddb,#74a9cf,#3690c0,#0570b0,#045a8d,#023858#f6eff7,#bdc9e1,#67a9cf,#02818a#f6eff7,#bdc9e1,#67a9cf,#1c9099,#016c59#f6eff7,#d0d1e6,#a6bddb,#67a9cf,#1c9099,#016c59#f6eff7,#d0d1e6,#a6bddb,#67a9cf,#3690c0,#02818a,#016450#fff7fb,#ece2f0,#d0d1e6,#a6bddb,#67a9cf,#3690c0,#02818a,#016450#fff7fb,#ece2f0,#d0d1e6,#a6bddb,#67a9cf,#3690c0,#02818a,#016c59,#014636#7f3b08,#b35806,#e08214,#fdb863,#fee0b6,#d8daeb,#b2abd2,#8073ac,#542788,#2d004b#7f3b08,#b35806,#e08214,#fdb863,#fee0b6,#f7f7f7,#d8daeb,#b2abd2,#8073ac,#542788,#2d004b#e66101,#fdb863,#b2abd2,#5e3c99#e66101,#fdb863,#f7f7f7,#b2abd2,#5e3c99#b35806,#f1a340,#fee0b6,#d8daeb,#998ec3,#542788#b35806,#f1a340,#fee0b6,#f7f7f7,#d8daeb,#998ec3,#542788#b35806,#e08214,#fdb863,#fee0b6,#d8daeb,#b2abd2,#8073ac,#542788#b35806,#e08214,#fdb863,#fee0b6,#f7f7f7,#d8daeb,#b2abd2,#8073ac,#542788#f1eef6,#d7b5d8,#df65b0,#ce1256#f1eef6,#d7b5d8,#df65b0,#dd1c77,#980043#f1eef6,#d4b9da,#c994c7,#df65b0,#dd1c77,#980043#f1eef6,#d4b9da,#c994c7,#df65b0,#e7298a,#ce1256,#91003f#f7f4f9,#e7e1ef,#d4b9da,#c994c7,#df65b0,#e7298a,#ce1256,#91003f#f7f4f9,#e7e1ef,#d4b9da,#c994c7,#df65b0,#e7298a,#ce1256,#980043,#67001f#f2f0f7,#cbc9e2,#9e9ac8,#6a51a3#f2f0f7,#cbc9e2,#9e9ac8,#756bb1,#54278f#f2f0f7,#dadaeb,#bcbddc,#9e9ac8,#756bb1,#54278f#f2f0f7,#dadaeb,#bcbddc,#9e9ac8,#807dba,#6a51a3,#4a1486#fcfbfd,#efedf5,#dadaeb,#bcbddc,#9e9ac8,#807dba,#6a51a3,#4a1486#fcfbfd,#efedf5,#dadaeb,#bcbddc,#9e9ac8,#807dba,#6a51a3,#54278f,#3f007d#67001f,#b2182b,#d6604d,#f4a582,#fddbc7,#d1e5f0,#92c5de,#4393c3,#2166ac,#053061#67001f,#b2182b,#d6604d,#f4a582,#fddbc7,#f7f7f7,#d1e5f0,#92c5de,#4393c3,#2166ac,#053061#ca0020,#f4a582,#92c5de,#0571b0#ca0020,#f4a582,#f7f7f7,#92c5de,#0571b0#b2182b,#ef8a62,#fddbc7,#d1e5f0,#67a9cf,#2166ac#b2182b,#ef8a62,#fddbc7,#f7f7f7,#d1e5f0,#67a9cf,#2166ac#b2182b,#d6604d,#f4a582,#fddbc7,#d1e5f0,#92c5de,#4393c3,#2166ac#b2182b,#d6604d,#f4a582,#fddbc7,#f7f7f7,#d1e5f0,#92c5de,#4393c3,#2166ac#67001f,#b2182b,#d6604d,#f4a582,#fddbc7,#e0e0e0,#bababa,#878787,#4d4d4d,#1a1a1a#67001f,#b2182b,#d6604d,#f4a582,#fddbc7,#ffffff,#e0e0e0,#bababa,#878787,#4d4d4d,#1a1a1a#ca0020,#f4a582,#bababa,#404040#ca0020,#f4a582,#ffffff,#bababa,#404040#b2182b,#ef8a62,#fddbc7,#e0e0e0,#999999,#4d4d4d#b2182b,#ef8a62,#fddbc7,#ffffff,#e0e0e0,#999999,#4d4d4d#b2182b,#d6604d,#f4a582,#fddbc7,#e0e0e0,#bababa,#878787,#4d4d4d#b2182b,#d6604d,#f4a582,#fddbc7,#ffffff,#e0e0e0,#bababa,#878787,#4d4d4d#feebe2,#fbb4b9,#f768a1,#ae017e#feebe2,#fbb4b9,#f768a1,#c51b8a,#7a0177#feebe2,#fcc5c0,#fa9fb5,#f768a1,#c51b8a,#7a0177#feebe2,#fcc5c0,#fa9fb5,#f768a1,#dd3497,#ae017e,#7a0177#fff7f3,#fde0dd,#fcc5c0,#fa9fb5,#f768a1,#dd3497,#ae017e,#7a0177#fff7f3,#fde0dd,#fcc5c0,#fa9fb5,#f768a1,#dd3497,#ae017e,#7a0177,#49006a#a50026,#d73027,#f46d43,#fdae61,#fee090,#e0f3f8,#abd9e9,#74add1,#4575b4,#313695#a50026,#d73027,#f46d43,#fdae61,#fee090,#ffffbf,#e0f3f8,#abd9e9,#74add1,#4575b4,#313695#d7191c,#fdae61,#abd9e9,#2c7bb6#d7191c,#fdae61,#ffffbf,#abd9e9,#2c7bb6#d73027,#fc8d59,#fee090,#e0f3f8,#91bfdb,#4575b4#d73027,#fc8d59,#fee090,#ffffbf,#e0f3f8,#91bfdb,#4575b4#d73027,#f46d43,#fdae61,#fee090,#e0f3f8,#abd9e9,#74add1,#4575b4#d73027,#f46d43,#fdae61,#fee090,#ffffbf,#e0f3f8,#abd9e9,#74add1,#4575b4#a50026,#d73027,#f46d43,#fdae61,#fee08b,#d9ef8b,#a6d96a,#66bd63,#1a9850,#006837#a50026,#d73027,#f46d43,#fdae61,#fee08b,#ffffbf,#d9ef8b,#a6d96a,#66bd63,#1a9850,#006837#d7191c,#fdae61,#a6d96a,#1a9641#d7191c,#fdae61,#ffffbf,#a6d96a,#1a9641#d73027,#fc8d59,#fee08b,#d9ef8b,#91cf60,#1a9850#d73027,#fc8d59,#fee08b,#ffffbf,#d9ef8b,#91cf60,#1a9850#d73027,#f46d43,#fdae61,#fee08b,#d9ef8b,#a6d96a,#66bd63,#1a9850#d73027,#f46d43,#fdae61,#fee08b,#ffffbf,#d9ef8b,#a6d96a,#66bd63,#1a9850#fee5d9,#fcae91,#fb6a4a,#cb181d#fee5d9,#fcae91,#fb6a4a,#de2d26,#a50f15#fee5d9,#fcbba1,#fc9272,#fb6a4a,#de2d26,#a50f15#fee5d9,#fcbba1,#fc9272,#fb6a4a,#ef3b2c,#cb181d,#99000d#fff5f0,#fee0d2,#fcbba1,#fc9272,#fb6a4a,#ef3b2c,#cb181d,#99000d#fff5f0,#fee0d2,#fcbba1,#fc9272,#fb6a4a,#ef3b2c,#cb181d,#a50f15,#67000d#e41a1c,#377eb8,#4daf4a,#984ea3#e41a1c,#377eb8,#4daf4a,#984ea3,#ff7f00#e41a1c,#377eb8,#4daf4a,#984ea3,#ff7f00,#ffff33#e41a1c,#377eb8,#4daf4a,#984ea3,#ff7f00,#ffff33,#a65628#e41a1c,#377eb8,#4daf4a,#984ea3,#ff7f00,#ffff33,#a65628,#f781bf#e41a1c,#377eb8,#4daf4a,#984ea3,#ff7f00,#ffff33,#a65628,#f781bf,#999999#66c2a5,#fc8d62,#8da0cb,#e78ac3#66c2a5,#fc8d62,#8da0cb,#e78ac3,#a6d854#66c2a5,#fc8d62,#8da0cb,#e78ac3,#a6d854,#ffd92f#66c2a5,#fc8d62,#8da0cb,#e78ac3,#a6d854,#ffd92f,#e5c494#66c2a5,#fc8d62,#8da0cb,#e78ac3,#a6d854,#ffd92f,#e5c494,#b3b3b3#8dd3c7,#ffffb3,#bebada,#fb8072,#80b1d3,#fdb462,#b3de69,#fccde5,#d9d9d9,#bc80bd#8dd3c7,#ffffb3,#bebada,#fb8072,#80b1d3,#fdb462,#b3de69,#fccde5,#d9d9d9,#bc80bd,#ccebc5#8dd3c7,#ffffb3,#bebada,#fb8072,#80b1d3,#fdb462,#b3de69,#fccde5,#d9d9d9,#bc80bd,#ccebc5,#ffed6f#8dd3c7,#ffffb3,#bebada,#fb8072#8dd3c7,#ffffb3,#bebada,#fb8072,#80b1d3#8dd3c7,#ffffb3,#bebada,#fb8072,#80b1d3,#fdb462#8dd3c7,#ffffb3,#bebada,#fb8072,#80b1d3,#fdb462,#b3de69#8dd3c7,#ffffb3,#bebada,#fb8072,#80b1d3,#fdb462,#b3de69,#fccde5#8dd3c7,#ffffb3,#bebada,#fb8072,#80b1d3,#fdb462,#b3de69,#fccde5,#d9d9d9#9e0142,#d53e4f,#f46d43,#fdae61,#fee08b,#e6f598,#abdda4,#66c2a5,#3288bd,#5e4fa2#9e0142,#d53e4f,#f46d43,#fdae61,#fee08b,#ffffbf,#e6f598,#abdda4,#66c2a5,#3288bd,#5e4fa2#d7191c,#fdae61,#abdda4,#2b83ba#d7191c,#fdae61,#ffffbf,#abdda4,#2b83ba#d53e4f,#fc8d59,#fee08b,#e6f598,#99d594,#3288bd#d53e4f,#fc8d59,#fee08b,#ffffbf,#e6f598,#99d594,#3288bd#d53e4f,#f46d43,#fdae61,#fee08b,#e6f598,#abdda4,#66c2a5,#3288bd#d53e4f,#f46d43,#fdae61,#fee08b,#ffffbf,#e6f598,#abdda4,#66c2a5,#3288bd#ffffcc,#c2e699,#78c679,#238443#ffffcc,#c2e699,#78c679,#31a354,#006837#ffffcc,#d9f0a3,#addd8e,#78c679,#31a354,#006837#ffffcc,#d9f0a3,#addd8e,#78c679,#41ab5d,#238443,#005a32#ffffe5,#f7fcb9,#d9f0a3,#addd8e,#78c679,#41ab5d,#238443,#005a32#ffffe5,#f7fcb9,#d9f0a3,#addd8e,#78c679,#41ab5d,#238443,#006837,#004529#ffffcc,#a1dab4,#41b6c4,#225ea8#ffffcc,#a1dab4,#41b6c4,#2c7fb8,#253494#ffffcc,#c7e9b4,#7fcdbb,#41b6c4,#2c7fb8,#253494#ffffcc,#c7e9b4,#7fcdbb,#41b6c4,#1d91c0,#225ea8,#0c2c84#ffffd9,#edf8b1,#c7e9b4,#7fcdbb,#41b6c4,#1d91c0,#225ea8,#0c2c84#ffffd9,#edf8b1,#c7e9b4,#7fcdbb,#41b6c4,#1d91c0,#225ea8,#253494,#081d58#ffffd4,#fed98e,#fe9929,#cc4c02#ffffd4,#fed98e,#fe9929,#d95f0e,#993404#ffffd4,#fee391,#fec44f,#fe9929,#d95f0e,#993404#ffffd4,#fee391,#fec44f,#fe9929,#ec7014,#cc4c02,#8c2d04#ffffe5,#fff7bc,#fee391,#fec44f,#fe9929,#ec7014,#cc4c02,#8c2d04#ffffe5,#fff7bc,#fee391,#fec44f,#fe9929,#ec7014,#cc4c02,#993404,#662506#ffffb2,#fecc5c,#fd8d3c,#e31a1c#ffffb2,#fecc5c,#fd8d3c,#f03b20,#bd0026#ffffb2,#fed976,#feb24c,#fd8d3c,#f03b20,#bd0026#ffffb2,#fed976,#feb24c,#fd8d3c,#fc4e2a,#e31a1c,#b10026#ffffcc,#ffeda0,#fed976,#feb24c,#fd8d3c,#fc4e2a,#e31a1c,#b10026#ffffcc,#ffeda0,#fed976,#feb24c,#fd8d3c,#fc4e2a,#e31a1c,#bd0026,#800026mq.cA->n == nncluster <= nassignment[i] < nclusterassignment[jj] < nclusterncluster = %d, mq = %f n == A->nmaxgain=%f, merge %d, %d maxgain <= 0verbose=%d A->m == A->nSparseMatrix_is_symmetric(A, FALSE)SparseMatrix_is_symmetric(A, test_pattern_symmetry_only)assignment[i] >= 0 && assignment[i] < ngain in merging node %d with node %d = %f-%f = %f maxgain=%f, merge with existing cluster %d, %d gain: %f -- no gain, skip merging node %d mq = %f new mq = %f level = %d, n = %d, nc = %d, gain = %g, mq_in = %f, mq_out = %f hierachical_mq_clusteringmq_clusteringMultilevel_MQ_Clustering_establishget_mqMultilevel_MQ_Clustering_initclustering.cn < target modularity = %f new modularity = %f level = %d, n = %d, nc = %d, gain = %g ncluster_target = %d, close to n=%d Multilevel_Modularity_Clustering_establishMultilevel_Modularity_Clustering_inithierachical_modularity_clusteringmodularity_clusteringQuadTree.cqt1->n > 0 && qt2->n > 0dist > 0wgt > 0(*in c*){Line[{,{%f, %f},{%f, %f, %f}},}]}(*end C*),(*a*) {Red,(*node %d*) Point[{,(*b*){iq >= 0width > 0!(q->l)ii < 1<<dim && ii >= 0q->qts[ii]q->n == 1!(q->qts)q->lGraphics[{Graphics3D[{}, PlotRange -> All] }, PlotRange -> All, Frame -> True, FrameTicks -> True] QuadTree_get_nearest_internalQuadTree_add_internalQuadTree_newQuadTree_repulsive_force_accumulateQuadTree_repulsive_force_interactkN�u��>�p= ף�?Assertion Failed: %s memory overflow: malloc failed in SafeMalloc.info= key= l->key= r->key= p->key= red=%i nodelist.cactualinsertNodelistmindistarticulation_posoneblock_block_%ddeglist.cremoveDeglistblocktree.cs->sz > 0root = %s pop_clone_%d_span_%d\3&��<-DT�!�?repulsiveforcelevelssmoothingavg_distgraph_distpower_distspringquadtreenormaltrueyesfastbeautifyoverlap_shrinkrotationlabel_schemesfdp only supports start=random label_scheme = %d > 4 : ignoring �m�d��?�q�q�?spring_electrical_control: random start %d seed %d K : %.03f C : %.03f octree scheme %s method %s edge_labeling_scheme %d }}}],Hue[%f]Text[%d,{, Point[{{}},ImageSize->%f] },{Arrow[{{Tooltip[Point[{}],%d]}}]dmean = %f, rho = %f send random coordinates scaling factor = %f ctrl->overlap=%d SPRING_ELECTRICALSPRING_MAXENTSTRESS_MAXENTSTRESS_APPROXUNIFORM_STRESSFULL_STRESSNONENORMALFASTHYBRIDSTRESS_MAJORIZATION_AVG_DISTSPRINGTRIANGLERNG repulsive and attractive exponents: %.03f %.03f max levels %d coarsen_scheme %d coarsen_node %d quadtree size %d max_level %d Barnes-Hutt constant %.03f tolerance %.03f maxiter %d cooling %.03f step size %.03f adaptive %d beautify_leaves %d node weights %d rotation %.03f smoothing %s overlap %d initial_scaling %.03f do_shrinking %d Graphics[{GrayLevel[0.5],Line[{Graphics3D[{GrayLevel[0.5],Line[{(*width={%f,%f}, x = {%f,%f}*){GrayLevel[.5,.5],Rectangle[{%f,%f},{%f,%f}]} iter = %d, step = %f Fnorm = %f nz = %d K = %f spring_electrical_embedding_slowQUAD_TREE_HYBRID, size larger than %d, switch to fast quadtreeSTRESS_MAJORIZATION_GRAPH_DISTSTRESS_MAJORIZATION_POWER_DIST�m�d��333333�?�!3|�@333333�?ffffff @�������?��������?�?�?p� �Eߑ?neighb=%d post_process.clen > 0(!jcn) && (!val)idiag >= 0ideal_dist_scheme value wrongjdiag >= 0SparseMatrix_is_symmetric(A, FALSE) && A->type == MATRIX_TYPE_REAL������������P������SpringSmoother_smoothSpringSmoother_newTriangleSmoother_newget_edge_label_matrixStressMajorizationSmoother_smoothSparseStressMajorizationSmoother_newStressMajorizationSmoother2_newideal_distance_matrixп��������?j��uniform_stress.cSparseMatrix_is_symmetric(B, FALSE)uniform_stressUniformStressSmoother_new{�G�z����ؗ�Ҝ��CcA���@��@333333$@�@�~@��������H��H����H��������p��p�����(��PriorityQueue.cqgain <= q->ngainPriorityQueue_push%s:%d: %s: Assertion '%s' failed. __builtin_expect(!this->empty(), true)/usr/include/c++/8/bits/stl_vector.hBlock: Deleted!vector::_M_default_append__builtin_expect(__n < this->size(), true)std::vector<_Tp, _Alloc>::reference std::vector<_Tp, _Alloc>::front() [with _Tp = Variable*; _Alloc = std::allocator<Variable*>; std::vector<_Tp, _Alloc>::reference = Variable*&]std::vector<_Tp, _Alloc>::reference std::vector<_Tp, _Alloc>::operator[](std::vector<_Tp, _Alloc>::size_type) [with _Tp = PairNode<Constraint*>*; _Alloc = std::allocator<PairNode<Constraint*>*>; std::vector<_Tp, _Alloc>::reference = PairNode<Constraint*>*&; std::vector<_Tp, _Alloc>::size_type = long unsigned int]9Underflow-active+<=(generate-constraints.cppx<=Xy<=Yr->width()<1e40std::vector<_Tp, _Alloc>::reference std::vector<_Tp, _Alloc>::operator[](std::vector<_Tp, _Alloc>::size_type) [with _Tp = Constraint*; _Alloc = std::allocator<Constraint*>; std::vector<_Tp, _Alloc>::reference = Constraint*&; std::vector<_Tp, _Alloc>::size_type = long unsigned int]Node::Node(Variable*, Rectangle*, double)Rectangle::Rectangle(double, double, double, double)�\��)c=Hremove_rectangle_overlap.cpp0 <= nvoid removeRectangleOverlap(int, Rectangle**, double, double)Unsatisfied constraintbasic_string::_M_createcs[i]->slack()>-0.0000001!v->activeCycle Error!Unsatisfied constraint: v->left->block == v->right->blockbasic_string::_M_replacestd::vector<_Tp, _Alloc>::reference std::vector<_Tp, _Alloc>::operator[](std::vector<_Tp, _Alloc>::size_type) [with _Tp = Constraint*; _Alloc = std::allocator<Constraint*>; std::vector<_Tp, _Alloc>::reference = Constraint*&; std::vector<_Tp, _Alloc>::size_type = long unsigned int]void IncVPSC::splitBlocks()virtual void IncVPSC::satisfy()void VPSC::refine()4VPSC7IncVPSCcsolve_VPSC.cppvpsc!=NULLvoid deleteVPSC(VPSC*);�������M��|���H"|���S.|��4W8|���b|���z|�����|�����|��4�K}����}��D��}��h�~��P��~�����~�����������1��X�F����[�� �p��h�u��D��������P�H���h�����L�Ȁ��h�����H���������������(����DȂ��`���tH��������ȅ������������<h���t�������������$(���p���� ����4 ���` H���� ����� (���!H���$!����H!H���x!���!����!8���"(���$"����X"����p"(����"H����"h����"�����"�����"���"��#ش��@#����T#h���h#����|#ص���#x����#H����#����$�� $���8$����L$��t$���$����$�����$�����$����%Ƚ��$%���8%H���P%X���d%x���x%�����%(����%����&h��P&8���&(���&���'���d'���'����'���$(���\(����(���((�<)���)(���(*���<*h���P*����d*��x*�����*����*� ��\+���+8 ���+� �� ,� ��4,����,����,���-���-���,-���@-���|-���-x$��.x%��H.�%��`.�%��t.&���.8&���.X&���.h&���.�*��/�*��,/H+��T/(,���/-���/(-���/x-���/�-���/�-��0�/��P0x9���0H:���0x>��1�E��\1hH���1�H���1�K���1R��2XR��P2S��p2�T���2�U��3XW��D3�W��\3(X��t3�X���3�X���3_��4_��$4`��p4x`���4�`���4a���4�a��5(e��d5xg���5hj��6�j�� 6�l��X6�n���6p���6�p��7hq��87�q��P7Hr��p7�r���78t���7u���7(u��8�x��P8xy���8|���8�}��49���t9���9���98���H:X����:�����:ا���:h����:Ȩ��;���$;H���8;X����;���;(����;(����;����H<���t<X����<Ȱ���<���H=x����=�����=����=H����=�����=ȴ��>8���>����P>(���d>����x>�����>���>����>H����>�����>ط���>8���?���� ?(���p?�����?�����?�����?���?���@H���@x���(@���<@��P@���d@X���x@�����@����@8���@����@���(A���xAh���A���A���B(��B���DBh��hBH���Bh��CH��hC����C���D8��XD����D����D���E���dE���E���E�F(�FH�8Fh�LF��`F��tF���F�G(�$GH�8Gh�LG��`Gh�tG���G���G��GX�H��$H����H8����HX���HIX����IH��Jx��J���`Jh���J���K("��dK�"���K�#���K�$���K�2��HLHF���L8H�� MhH��8M�J���MM���M(O��8NXO��PN�O��hN�O���N�O���NP���N�S���N8T��O�T��8O�T��LO�T��`OhU���OxU���O�U���O�U���O�U���O�V��PW��0P�W��dPhY���P�Y���PHZ���P(\��Q�\��@Q�\��TQhc���Q�c���Q�k��R��pR����RȞ��S����\S�����S(���$Th���PT8����T�����Tx����T����HU(����Uȸ���UX���V���PVؾ���V8����Vx����V��HWH��\W����W���0X���dX����X����X8��4Y����Y����Y��� Z���8ZH���Z���Z�$[x�T[8�[��[X�[����H\���\\(����\�����\����\h���]���� ]����L]�����]����]����]H����]����^����T^X����^�����^����^��,_���p_����_h���_����_���d`X ���`!���`�"���`$�� a�&��Lax(���a�(���a�*���ax+��b�,��`b�.���bh1���bH@��(chA��<cB��TchB��|cL���c�L��(d�N��tdhT���d�T���d8U��(e�U��dehV���e�V���e�V���e(W���e�Z��Df�Z��lf�`���f(f��8g8i���g�k��h(l��$hxm��\h�m���h�o���h�o���h�u��$i�{��ti���i؆��Lj���pjȉ���j����k��Xk�����k���l(���,l����Ll����`l�����l�����l��m���\m�����mX����mH����mȹ��8nx����nX����n����oȾ���o8����oX���ph���`p���p�����pX��q���4q���Hq����qh��rX���r����r���rH��<sx���s���s���8t����t����tx��t��u�$u��xu���u��`v��v����w����lw����wh��Xx���lx����x����x���x8���xx���x��yX��(y���<y���Py��dyX��xy����y(���y����y���z� ��XzX ���z���zX���z����z(��{���8{8 ��P{� ��h{8���{����{h���{����{���{���$|��`|����|����|��}���L}���`}����}����}���}8���}���4~����~����~(���~����~����~h��8x��L���`���t���8����������(�X��T����h����|�������������������Ѐ���(����h������(����<����P����d����|�H ����� ���H!��0��!��H��!��d�("��x�X"����H%����%���h0�����1����(6��H�h7����(B����B��$��D��t��H��ąJ���HK��\�\���8`��`�X`��t�h`����x`�����`�����`��؇a���(a��$�Xa��L�ha��`�xa��t��a�����a����8b���Xb���hb���xb��0��b��\�8c����Xd���e�����f��<�xg��`��g����hh����h����i��@�(p�����p������������8�h���������(���������H�h�������������������8�ؔ��`���t����������������8���d�H���̏(���@�����x������(���<���t�Ȱ����h�������ȷ��T���h����Вػ���X���`�����t�������������ȓ8���ܓ�����(���@����t�8�������������ܔh������$����8�(���������H���X��0�h��D����x������H��Ė�������8�x��T��������H��8����X���������h������ �(��4�h��H����p���������������X��Йx����������(����<�(��P�H��h�h��|�x�����������������Ԛ���h���x�� ���X�8��l�H����x������������ě���8������X�H����X��x�8���`������������@��������ܞ ���( ���8 ���X ��4�x ��H�� ��\�� ��p�� ����H ����X ����� �����d������h�������������� ����L����`����|����������������!��T��!��p�"����#����8'�����)��H��1�����<����J��d�x^��Ȥhl��,�8m��t��n�����o�����s��4�H��������,�8���T�h���l�x�����Ȇ��������ħ���اH����H���d�h�����x���Шh��� �8���x�x���ȩX����X�����h���Ԫȧ���x���@������(�����8�����������������@������8����x��@�����8�������(���H��,����L�����������X��ܮ��������H��<�X��P�h��d�x��x�x�����������(����X������������������4�������������������@����t������X���̳���(��L�x����(�������X��L����`�h������0����d�8�������,�( ��d�( ����� ��$����p�����(����� ��,�H��`����������(��̺8��`�X����������������������8�����������0�����������x��4���`���t����������x��P������!����"����#�� ��#����$����8%��h�8&�����&��4�X'�����'��Ծ�(�� �)����h)����(*�����*��ܿ�*����,��8�8/���h8�����>���?�� �8@�����@�����@��|��A����B����hH�� ��H��@��H��x��I����XJ�����J��\��J��p��L�����L����8M�����O��L�8P�����Q���(R����X��P��]����(d��\�Xd�����d��l��e����f��$�hf��T��g�����h���i�� ��j��l��j����(l����Xp��h��p�����q����r����Hs����Ht��X��t��(�xu��H��u����(v���xv��p�x�����y��8��y��|�8z����hz�����z����z��\��z��p�({����8{����H{����X{����x{�����{�����{�����{���x|��T�H}����zRx�$����.FJw�?:*3$"Dp0���.\Xe��E�Yx\e��E�Y�`e��G��e��%,��e���B�H�H �l ABO�Hf���D8 D�g���D� DH$�h��5B�B�B �B(�A0�A8�DP 8C0A(B BBBA4p�i��bB�B�A �A(�D0M(A ABB(��i���A�D�G@� AAF0�`k���B�D�D �Q0| AABAL�k���B�B�E �A(�A0�s (D BBBH� (D BBBAHX\m���F�B�B �B(�D0�D8�D`o8D0A(B BBB���n���F�B�B �B(�A0�A8�D�W�B�`�B�M�B�g�B�K 8A0A(B BBBAc�B�C�A�N�B�_�A�04�q���F�H�A �G`@ AABF(h|u��HF�D�K �W ABI ��u��8E�NP| AHL��v��gF�B�B �B(�D0�D8�G�7 8A0A(B BBBD0܅��lF�D�A �GPP AABA<��� E�S X���8E�NP| AH,|8����M�D�C �s ABE<�ȇ���F�F�E �A(�A0�w(D BBB�(���(H_,@���F�K�D �� ABH 40������O0lI�0X����gE�D�J | KAEDAA�8���[x b�����#���������������%�Ў��HV؎��"($�E�D�G0� AAF PĐ���Z��H�H�t���������a�����5�$���$H[�<����Hl D<������T�D�F �](U0H8D@U WABA���$P���ZDU<����5HlT����(� olؔ���$�T���@E�K�F gAA�l����E�� E�L���<�X���{W�B�F �D(�A0�� (A BBBD����0���� D����X����3lȘ��3�����4�����F�E�D �DP� AABH ����A�J0N AF, L���B�D�D �[ ABHH8 �����B�E�E �E(�D0�A8�DP� 8A0A(B BBBKL� ����B�B�B �E(�A0�D8�D�� 8A0A(B BBBB8� �����B�E�D �D(�DP� (A ABBE8 D���|B�E�D �D(�G�� (A ABBJHL �����B�B�B �A(�A0�G� L�@I�@� 0A(A BBBA$� ���uE�R�G MAAH� t����F�B�E �B(�A0�A8�DpW 8A0A(B BBBJHة��B�G�B �B(�A0�A8�G@�8A0A(B BBB4X�����F�A�D �� KDEVABL�4���V F�N�B �B(�A0�A8�G�� 8A0A(B BBBE@�D����F�E�E �K(�A0�Dp 0A(A BBBJH$�����F�B�B �B(�F0�D8�D�X 8A0A(B BBBD�p��� B�B�B �B(�A0�C8�Q���L�H�E�f�� 8A0A(B BBBKD�N�E�I�Z��L�c�G���N�E�I�`�H ���wF�B�B �B(�A0�A8�J�� 8A0A(B BBBB\ ����p ���F� ��M� L��"� h���P� ��� F�B�E �B(�A0�A8�I�� 8A0A(B BBBCx���<F�B�B �B(�A0�C8�G`� 8A0A(B BBBAJ 8C0A(B BBBAK8C0A(B BBB0�t��/F�E�A � ABA\�p�'F�B�E �B(�A0�A8�I@M 8A0A(B BBBG�8F0A(B BBB,$@��F�D�A �� ABGT��Hh���F�B�E �B(�A0�A8�DPR 8A0A(B BBBG,�0��A�G0e ABV FDL���DB�B�E �B(�A0�A8�D� 8A0A(B BBBD4���Hl�\HS`�� 8t���F�B�A �A(�G`^ (A ABBK0�d�#F�A�A �GP� AABJL�`�RF�B�B �B(�A0�D8�J�� 8A0A(B BBBID4p����F�B�B �B(�A0�D8�F@�8A0A(B BBB|(���(H_�@����<���Sy U��������������� L�����H�E�B �B(�A0�C8�N�� 8A0A(B BBBELh���$`d����A�D�D0�AA(����A�H�D0� AAG(������A�H�D0� AAK�d����`���GE�A����n$�H8���F�B�E �B(�A0�A8�G`� 8A0A(B BBBFL������ F�B�E �B(�D0�A8�J� 8A0A(B BBBC�����H0� EL�� ��&F�E�B �B(�A0�D8�J�a 8A0A(B BBBGL@d �� F�E�B �E(�A0�A8�G�- 8A0A(B BBBFL�4���F�B�B �B(�A0�A8�G�i 8A0A(B BBBH����(����fE�A�G@ODA( ��E�C�G@r CAK4L���OE�D�D \ AAED GAL� ���E�G �IL�� ���B�M�F �B(�A0�C8�D�2 8E0A(B BBBA<�0"���B�B�E �A(�D0�� (D BBBA@4�"���B�B�E �D(�A0�DPw 0A(A BBBAx$��Ec U�D$��e U,��$���F�D�H �F0y DAB�%��!J�O�L�0%�� F�B�B �B(�A0�A8�G�