�fV ���SH����H�5�H��0dH�%(H�D$(1�L�L$ L�D$�ԏ������H�|$���H�|$ �$賍���$�f(��D$�'f.���E�uxf.���D���uj�6����L$�$�H���}���f.�f(�zx�~�f(�fT�f.-� w;�;�S���f(�����H�L$(dH3%(uH��0[�謎��H��t�1���辍���4$�=� fT�f.��&������D$fD.T$�������f.t {�ݎ��u��f.���H��f(��4 fT 4f.�rf��f/�v1H�����f.�zf/ w�����!�` H����D$����D$f���!f.�z��* t���fDUH��SH��H��(dH�%(H�D$1�H�G���t<H���臋��f._ {2��見��H�T$dH3%(��H��([]�H�T 1�轤����u��D$�.����D$H��t�H�4 H�:�ċ������������H�t$H���J���f.�{N���D$� ��f���H*L$�Y��XD$�Y���H� � H�5�H�9�ދ��1��A������u��D$蕌���D$H���t����@��H��H�52������ff.�f���H��H�b H�5; 1��ģ��@��H��H�B H�5+ 1�餣��@��H��H�" H�53 �遣�����H��H� H�5� 1��d���@��H��H�� H�53 1��D���@��H��H�� H�5S ��!������H��H�� H�5� ��������H��H�� H�5� �������H��H�b H�5� 1��Ģ��@��H��H�B H�5K 1�餢��@��H��H�" H�5K 1�鄢��@��H��H� H�5[ 1��d���@��H��H�� H�5K 1��D���@��H��H�� H�5� 1��$���@��UH��H�55 SH��AQ�Ɖ��H��t)H��1�H��1�蒊��H�+H��u H�CH��P0H��Z[]��S���H���?���H�� H�5 H��1�AX[]鮡��ff.���S��H�=4 ���H��H�����>�1���H�5lH��H��菇��������H�5�H��H���p�������H�51H��H���Q���1�����Շ��H�5zH��H���3���1�����跇��H�5bH��H��������H��[���H��H���(dd)dd|$dd:iscloseOO:gcdintermediate overflow in fsummath.fsum partials-inf + inf in fsum(di)math domain errormath range errorpowfmodhypotatan2logcopysigndO:ldexppitauacosacoshasinasinhatanatanhceildegreeserferfcexpm1fabsfactorialfloorfrexpisfiniteisinfisnanlgammalog1plog10log2modfradianssqrttruncmath__ceil____floor____trunc__brel_tolabs_tol��G�������x������_7a���(s(;LXww0�uw���~Cs����+���|g�!�?�?@@8@^@��@��@��@&A��KA��A���A��2�A(;L4B�uwsB�uw�B���7�Bs��6C�h0�{CZA���C Ƶ�;(Dl�YaRwNDtolerances must be non-negativetype %.100s doesn't define __trunc__ methodExpected an int as second argument to ldexp.factorial() only accepts integral valuesfactorial() argument should not exceed %ldfactorial() not defined for negative values@'�� @�?R;�{`Zj@�P@�X���@�@뇇B�A���@L�P��EA��A��]�v�}A{DA*_�{��A�qqiA?��t�A���A补���Apq�A&�"��B����A���2� B�i��AWL�up�#B���CQ�B��A�9�R�Fߑ?��cܥL@��������?>@@kﴑ�[�?�9@�?ƅ�oٵy�-DT�! @�#B����;��E@���H�P�?����&�.>7@i@��E@-DT�! ��a@�?�� �T�꿌�(J�?0CiW� �@-DT�!@�A�9��B.�?0>ffffff�?���������?�-DT�!�?�!3|�@-DT�!�?-DT�! @;`�{��(���P0����7����>���4Z����o����s����z����~���<����lу������D҄��� ���,b���\{���8 ����� ����� �� ;���� ^���De����l���< Æ��t ��0&���xY���;���XT����w������������@����p���,���LP����Џ��P���������(����\�����P���8 �x 0��������P ���� ��� ����� ����0���D����������h@��|�������L@��x����P����������@�����p�@��p����������������L 0� ��� ��� �$ 0�X �� �X���l0����P����p�����������������������0��� P���4p���H����\����p����P���lzRx�$�x���FJw�?:*3$"D8|���\0���p���IH ^ EzRx� x��F����IH ^ ELO��F$�D���$H0� EW JnzRx�0��V A(@���US�O�I@"AAA��$l����A�N�H@�AA�8��ph o AN����vN y Am����D � EhV~������H0U A <����H h ET A@����EH` ESzRx��}��C�@��[H p E �}��F�����qHn JX E��}��C$�<��iH@sHMPWHA@� AzRx�@:}��Dx����H@� AL}��Lt(���H@� AL���F�E�B �B(�A0�A8�G�� 8A0A(B BBBF$zRx��������,�|��������H � O�j}��V AHP,���(��B�A �A(�S0�(D ABBI����E0����zRx�0����$}��;,�ܐ���F�A�D �L ABAzRx� ���$�|��U4(�zD X A��|��4dx��A�D�D0x EAEY CAA������������ ���E�XPV AAzRx�P� ;|�� @l�oE�X@� AAzRx�@� �{�� ����E�XP AA��{��?��� ���PE�X@� AA��{��N��,����H h Em AL���H h Eg ALlp���3B�E�D �D(�DP� (I ABBJ� (C ABBAzRx�P����$K{��#(���,A�D�G@V AAAzRx�@�� {��L��`��t�������������������� �� �( �< �P ,�d 8�0x D�rE�K�E p AAAcAAzRx� �� �y��0� @���mF�N�H �DP� AABJzRx�P���$(y��W D H���ZH0q Ej H\ Gy��" | p����H b Et M � ,����H b Et M@� ���F�A�A �Q0� AABNr DABGd����H@ A�x��A08���F�K�A �DP AABD`�x��3L�l����-F�B�B �B(�A0�A8�G�� 8A0A(B BBBP$zRx��������,Mx��� p��DE�G0\ AGzRx�0� �y��`���E�� |�y��#R � Q| ED��z��KB0��{���^ ���|���H �GNU�p�0�� Ufp���& �� � ���o`0� �8� p0!�8 ���o���ox���o�o����o�� �&�&�&'' '0'@'P'`'p'�'�'�'�'�'�'�'�'(( (0(@(P(`(p(�(�(�(�(�(�(�(�()) )0)@)P)`)p)�)�)�)�)�)�)�)�)** *0*@*P*`*trunc(x:Real) -> Integral
Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.tanh(x)
Return the hyperbolic tangent of x.tan(x)
Return the tangent of x (measured in radians).sqrt(x)
Return the square root of x.sinh(x)
Return the hyperbolic sine of x.sin(x)
Return the sine of x (measured in radians).radians(x)
Convert angle x from degrees to radians.pow(x, y)
Return x**y (x to the power of y).modf(x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.log2(x)
Return the base 2 logarithm of x.log10(x)
Return the base 10 logarithm of x.log1p(x)
Return the natural logarithm of 1+x (base e). The result is computed in a way which is accurate for x near zero.log(x[, base])
Return the logarithm of x to the given base. If the base not specified, returns the natural logarithm (base e) of x.lgamma(x)
Natural logarithm of absolute value of Gamma function at x.ldexp(x, i)
Return x * (2**i).isnan(x) -> bool
Return True if x is a NaN (not a number), and False otherwise.isinf(x) -> bool
Return True if x is a positive or negative infinity, and False otherwise.isfinite(x) -> bool
Return True if x is neither an infinity nor a NaN, and False otherwise.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool
Determine whether two floating point numbers are close in value.
rel_tol maximum difference for being considered "close", relative to the magnitude of the input values abs_tol maximum difference for being considered "close", regardless of the magnitude of the input values
Return True if a is close in value to b, and False otherwise.
For the values to be considered close, the difference between them must be smaller than at least one of the tolerances.
-inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is not close to anything, even itself. inf and -inf are only close to themselves.hypot(x, y)
Return the Euclidean distance, sqrt(x*x + y*y).gcd(x, y) -> int greatest common divisor of x and ygamma(x)
Gamma function at x.fsum(iterable)
Return an accurate floating point sum of values in the iterable. Assumes IEEE-754 floating point arithmetic.frexp(x)
Return the mantissa and exponent of x, as pair (m, e). m is a float and e is an int, such that x = m * 2.**e. If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.fmod(x, y)
Return fmod(x, y), according to platform C. x % y may differ.floor(x)
Return the floor of x as an Integral. This is the largest integer <= x.factorial(x) -> Integral
Find x!. Raise a ValueError if x is negative or non-integral.fabs(x)
Return the absolute value of the float x.expm1(x)
Return exp(x)-1. This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.exp(x)
Return e raised to the power of x.erfc(x)
Complementary error function at x.erf(x)
Error function at x.degrees(x)
Convert angle x from radians to degrees.cosh(x)
Return the hyperbolic cosine of x.cos(x)
Return the cosine of x (measured in radians).copysign(x, y)
Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed zeros, copysign(1.0, -0.0) returns -1.0. ceil(x)
Return the ceiling of x as an Integral. This is the smallest integer >= x.atanh(x)
Return the inverse hyperbolic tangent of x.atan2(y, x)
Return the arc tangent (measured in radians) of y/x. Unlike atan(y/x), the signs of both x and y are considered.atan(x)
Return the arc tangent (measured in radians) of x.asinh(x)
Return the inverse hyperbolic sine of x.asin(x)
Return the arc sine (measured in radians) of x.acosh(x)