Return the hyperbolic tangent of z.tan($module, z, /) --
Return the tangent of z.sqrt($module, z, /) --
Return the square root of z.sinh($module, z, /) --
Return the hyperbolic sine of z.sin($module, z, /) --
Return the sine of z.rect($module, r, phi, /) --
Convert from polar coordinates to rectangular coordinates.polar($module, z, /) --
Convert a complex from rectangular coordinates to polar coordinates.
r is the distance from 0 and phi the phase angle.phase($module, z, /) --
Return argument, also known as the phase angle, of a complex.log10($module, z, /) --
Return the base-10 logarithm of z.log($module, x, y_obj=None, /) --
The logarithm of z to the given base.
If the base not specified, returns the natural logarithm (base e) of z.isnan($module, z, /) --
Checks if the real or imaginary part of z not a number (NaN).isinf($module, z, /) --
Checks if the real or imaginary part of z is infinite.isfinite($module, z, /) --
Return True if both the real and imaginary parts of z are finite, else False.isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0) --
Determine whether two complex numbers are close in value.
rel_tol maximum difference for being considered "close", relative to the magnitude of the input values abs_tol maximum difference for being considered "close", regardless of the magnitude of the input values
Return True if a is close in value to b, and False otherwise.
For the values to be considered close, the difference between them must be smaller than at least one of the tolerances.
-inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is not close to anything, even itself. inf and -inf are only close to themselves.exp($module, z, /) --
Return the exponential value e**z.cosh($module, z, /) --
Return the hyperbolic cosine of z.cos($module, z, /) --
Return the cosine of z.atanh($module, z, /) --
Return the inverse hyperbolic tangent of z.atan($module, z, /) --
Return the arc tangent of z.asinh($module, z, /) --
Return the inverse hyperbolic sine of z.asin($module, z, /) --
Return the arc sine of z.acosh($module, z, /) --
Return the inverse hyperbolic cosine of z.acos($module, z, /) --