uawdijnntqw1x1x1
IP : 3.145.85.123
Hostname : host45.registrar-servers.com
Kernel : Linux host45.registrar-servers.com 4.18.0-513.18.1.lve.2.el8.x86_64 #1 SMP Sat Mar 30 15:36:11 UTC 2024 x86_64
Disable Function : None :)
OS : Linux
PATH:
/
home
/
..
/
lib64
/
python3.8
/
multiprocessing
/
.
/
.
/
..
/
asyncio
/
..
/
__pycache__
/
numbers.cpython-38.opt-1.pyc
/
/
U e5d(�@s�dZddlmZmZdddddgZGdd�ded �ZGd d�de�Ze�e�Gdd�de�Z e �e �Gdd�de �ZGd d�de�Ze�e �dS)z~Abstract Base Classes (ABCs) for numbers, according to PEP 3141. TODO: Fill out more detailed documentation on the operators.�)�ABCMeta�abstractmethod�Number�Complex�Real�Rational�Integralc@seZdZdZdZdZdS)rz�All numbers inherit from this class. If you just want to check if an argument x is a number, without caring what kind, use isinstance(x, Number). �N)�__name__� __module__�__qualname__�__doc__� __slots__�__hash__r r r �/usr/lib64/python3.8/numbers.pyrs)� metaclassc@s�eZdZdZdZedd��Zdd�Zeedd���Z eed d ���Z edd��Zed d��Zedd��Z edd��Zdd�Zdd�Zedd��Zedd��Zedd��Zedd��Zedd ��Zed!d"��Zed#d$��Zed%d&��Zed'd(��Zd)S)*rabComplex defines the operations that work on the builtin complex type. In short, those are: a conversion to complex, .real, .imag, +, -, *, /, abs(), .conjugate, ==, and !=. If it is given heterogeneous arguments, and doesn't have special knowledge about them, it should fall back to the builtin complex type as described below. r cCsdS)z<Return a builtin complex instance. Called for complex(self).Nr ��selfr r r�__complex__-szComplex.__complex__cCs|dkS)z)True if self != 0. Called for bool(self).rr rr r r�__bool__1szComplex.__bool__cCst�dS)zXRetrieve the real component of this number. This should subclass Real. N��NotImplementedErrorrr r r�real5szComplex.realcCst�dS)z]Retrieve the imaginary component of this number. This should subclass Real. Nrrr r r�imag>szComplex.imagcCst�dS)zself + otherNr�r�otherr r r�__add__GszComplex.__add__cCst�dS)zother + selfNrrr r r�__radd__LszComplex.__radd__cCst�dS)z-selfNrrr r r�__neg__QszComplex.__neg__cCst�dS)z+selfNrrr r r�__pos__VszComplex.__pos__cCs ||S)zself - otherr rr r r�__sub__[szComplex.__sub__cCs ||S)zother - selfr rr r r�__rsub___szComplex.__rsub__cCst�dS)zself * otherNrrr r r�__mul__cszComplex.__mul__cCst�dS)zother * selfNrrr r r�__rmul__hszComplex.__rmul__cCst�dS)z5self / other: Should promote to float when necessary.Nrrr r r�__truediv__mszComplex.__truediv__cCst�dS)zother / selfNrrr r r�__rtruediv__rszComplex.__rtruediv__cCst�dS)zBself**exponent; should promote to float or complex when necessary.Nr)r�exponentr r r�__pow__wszComplex.__pow__cCst�dS)zbase ** selfNr)r�baser r r�__rpow__|szComplex.__rpow__cCst�dS)z7Returns the Real distance from 0. Called for abs(self).Nrrr r r�__abs__�szComplex.__abs__cCst�dS)z$(x+y*i).conjugate() returns (x-y*i).Nrrr r r� conjugate�szComplex.conjugatecCst�dS)z self == otherNrrr r r�__eq__�szComplex.__eq__N)r rrr rrrr�propertyrrrrrrr r!r"r#r$r%r'r)r*r+r,r r r rr sN c@s�eZdZdZdZedd��Zedd��Zedd��Zed d ��Z ed&dd ��Z dd�Zdd�Zedd��Z edd��Zedd��Zedd��Zedd��Zedd��Zdd�Zed d!��Zed"d#��Zd$d%�ZdS)'rz�To Complex, Real adds the operations that work on real numbers. In short, those are: a conversion to float, trunc(), divmod, %, <, <=, >, and >=. Real also provides defaults for the derived operations. r cCst�dS)zTAny Real can be converted to a native float object. Called for float(self).Nrrr r r� __float__�szReal.__float__cCst�dS)aGtrunc(self): Truncates self to an Integral. Returns an Integral i such that: * i>0 iff self>0; * abs(i) <= abs(self); * for any Integral j satisfying the first two conditions, abs(i) >= abs(j) [i.e. i has "maximal" abs among those]. i.e. "truncate towards 0". Nrrr r r� __trunc__�szReal.__trunc__cCst�dS)z$Finds the greatest Integral <= self.Nrrr r r� __floor__�szReal.__floor__cCst�dS)z!Finds the least Integral >= self.Nrrr r r�__ceil__�sz Real.__ceil__NcCst�dS)z�Rounds self to ndigits decimal places, defaulting to 0. If ndigits is omitted or None, returns an Integral, otherwise returns a Real. Rounds half toward even. Nr)rZndigitsr r r� __round__�szReal.__round__cCs||||fS)z�divmod(self, other): The pair (self // other, self % other). Sometimes this can be computed faster than the pair of operations. r rr r r� __divmod__�szReal.__divmod__cCs||||fS)z�divmod(other, self): The pair (self // other, self % other). Sometimes this can be computed faster than the pair of operations. r rr r r�__rdivmod__�szReal.__rdivmod__cCst�dS)z)self // other: The floor() of self/other.Nrrr r r�__floordiv__�szReal.__floordiv__cCst�dS)z)other // self: The floor() of other/self.Nrrr r r� __rfloordiv__�szReal.__rfloordiv__cCst�dS)zself % otherNrrr r r�__mod__�szReal.__mod__cCst�dS)zother % selfNrrr r r�__rmod__�sz Real.__rmod__cCst�dS)zRself < other < on Reals defines a total ordering, except perhaps for NaN.Nrrr r r�__lt__�szReal.__lt__cCst�dS)z self <= otherNrrr r r�__le__�szReal.__le__cCstt|��S)z(complex(self) == complex(float(self), 0))�complex�floatrr r rr�szReal.__complex__cCs| S)z&Real numbers are their real component.r rr r rr�sz Real.realcCsdS)z)Real numbers have no imaginary component.rr rr r rr�sz Real.imagcCs| S)zConjugate is a no-op for Reals.r rr r rr+szReal.conjugate)N)r rrr rrr.r/r0r1r2r3r4r5r6r7r8r9r:rr-rrr+r r r rr�s@ c@s<eZdZdZdZeedd���Zeedd���Zdd�Z d S) rz6.numerator and .denominator should be in lowest terms.r cCst�dS�Nrrr r r� numeratorszRational.numeratorcCst�dSr=rrr r r�denominatorszRational.denominatorcCs|j|jS)afloat(self) = self.numerator / self.denominator It's important that this conversion use the integer's "true" division rather than casting one side to float before dividing so that ratios of huge integers convert without overflowing. )r>r?rr r rr.szRational.__float__N) r rrr rr-rr>r?r.r r r rrsc@s�eZdZdZdZedd��Zdd�Zed&dd ��Zed d��Z edd ��Z edd��Zedd��Zedd��Z edd��Zedd��Zedd��Zedd��Zedd��Zedd��Zd d!�Zed"d#��Zed$d%��ZdS)'rz@Integral adds a conversion to int and the bit-string operations.r cCst�dS)z int(self)Nrrr r r�__int__+szIntegral.__int__cCst|�S)z6Called whenever an index is needed, such as in slicing)�intrr r r� __index__0szIntegral.__index__NcCst�dS)a4self ** exponent % modulus, but maybe faster. Accept the modulus argument if you want to support the 3-argument version of pow(). Raise a TypeError if exponent < 0 or any argument isn't Integral. Otherwise, just implement the 2-argument version described in Complex. Nr)rr&�modulusr r rr'4s zIntegral.__pow__cCst�dS)z self << otherNrrr r r� __lshift__?szIntegral.__lshift__cCst�dS)z other << selfNrrr r r�__rlshift__DszIntegral.__rlshift__cCst�dS)z self >> otherNrrr r r� __rshift__IszIntegral.__rshift__cCst�dS)z other >> selfNrrr r r�__rrshift__NszIntegral.__rrshift__cCst�dS)zself & otherNrrr r r�__and__SszIntegral.__and__cCst�dS)zother & selfNrrr r r�__rand__XszIntegral.__rand__cCst�dS)zself ^ otherNrrr r r�__xor__]szIntegral.__xor__cCst�dS)zother ^ selfNrrr r r�__rxor__bszIntegral.__rxor__cCst�dS)zself | otherNrrr r r�__or__gszIntegral.__or__cCst�dS)zother | selfNrrr r r�__ror__lszIntegral.__ror__cCst�dS)z~selfNrrr r r� __invert__qszIntegral.__invert__cCstt|��S)zfloat(self) == float(int(self)))r<rArr r rr.wszIntegral.__float__cCs| S)z"Integers are their own numerators.r rr r rr>{szIntegral.numeratorcCsdS)z!Integers have a denominator of 1.�r rr r rr?�szIntegral.denominator)N)r rrr rrr@rBr'rDrErFrGrHrIrJrKrLrMrNr.r-r>r?r r r rr&sD N)r �abcrr�__all__rr�registerr;rr<rrrAr r r r�<module>sp u _
/home/../lib64/python3.8/multiprocessing/././../asyncio/../__pycache__/numbers.cpython-38.opt-1.pyc