uawdijnntqw1x1x1
IP : 3.147.86.30
Hostname : host45.registrar-servers.com
Kernel : Linux host45.registrar-servers.com 4.18.0-513.18.1.lve.2.el8.x86_64 #1 SMP Sat Mar 30 15:36:11 UTC 2024 x86_64
Disable Function : None :)
OS : Linux
PATH:
/
home
/
..
/
proc
/
self
/
root
/
lib64
/
plymouth
/
..
/
..
/
..
/
lib64
/
python2.7
/
numbers.pyc
/
/
� zfc@ s�dZddlmZddlmZmZmZdddddgZdefd ��YZ de fd ��YZ e je�de fd��YZ e je�de fd��YZdefd ��YZeje�eje�dS(s~Abstract Base Classes (ABCs) for numbers, according to PEP 3141. TODO: Fill out more detailed documentation on the operators.i����(tdivision(tABCMetatabstractmethodtabstractpropertytNumbertComplextRealtRationaltIntegralcB s eZdZeZdZdZRS(s�All numbers inherit from this class. If you just want to check if an argument x is a number, without caring what kind, use isinstance(x, Number). (N(t__name__t __module__t__doc__Rt __metaclass__t __slots__tNonet__hash__(((s/usr/lib64/python2.7/numbers.pyR scB sFeZdZdZed��Zd�Zed��Zed��Z ed��Z ed��Zed��Zed��Z d �Zd �Zed��Zed��Zed ��Zed��Zed��Zed��Zed��Zed��Zed��Zed��Zed��Zd�ZRS(saComplex defines the operations that work on the builtin complex type. In short, those are: a conversion to complex, .real, .imag, +, -, *, /, abs(), .conjugate, ==, and !=. If it is given heterogenous arguments, and doesn't have special knowledge about them, it should fall back to the builtin complex type as described below. cC sdS(s<Return a builtin complex instance. Called for complex(self).N((tself((s/usr/lib64/python2.7/numbers.pyt__complex__/tcC s |dkS(s)True if self != 0. Called for bool(self).i((R((s/usr/lib64/python2.7/numbers.pyt__nonzero__4scC s t�dS(sXRetrieve the real component of this number. This should subclass Real. N(tNotImplementedError(R((s/usr/lib64/python2.7/numbers.pytreal8scC s t�dS(s]Retrieve the imaginary component of this number. This should subclass Real. N(R(R((s/usr/lib64/python2.7/numbers.pytimag@scC s t�dS(sself + otherN(R(Rtother((s/usr/lib64/python2.7/numbers.pyt__add__HscC s t�dS(sother + selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__radd__MscC s t�dS(s-selfN(R(R((s/usr/lib64/python2.7/numbers.pyt__neg__RscC s t�dS(s+selfN(R(R((s/usr/lib64/python2.7/numbers.pyt__pos__WscC s ||S(sself - other((RR((s/usr/lib64/python2.7/numbers.pyt__sub__\scC s ||S(sother - self((RR((s/usr/lib64/python2.7/numbers.pyt__rsub__`scC s t�dS(sself * otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__mul__dscC s t�dS(sother * selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rmul__iscC s t�dS(sPself / other without __future__ division May promote to float. N(R(RR((s/usr/lib64/python2.7/numbers.pyt__div__nscC s t�dS(s(other / self without __future__ divisionN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rdiv__vscC s t�dS(s`self / other with __future__ division. Should promote to float when necessary. N(R(RR((s/usr/lib64/python2.7/numbers.pyt__truediv__{scC s t�dS(s%other / self with __future__ divisionN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rtruediv__�scC s t�dS(sBself**exponent; should promote to float or complex when necessary.N(R(Rtexponent((s/usr/lib64/python2.7/numbers.pyt__pow__�scC s t�dS(sbase ** selfN(R(Rtbase((s/usr/lib64/python2.7/numbers.pyt__rpow__�scC s t�dS(s7Returns the Real distance from 0. Called for abs(self).N(R(R((s/usr/lib64/python2.7/numbers.pyt__abs__�scC s t�dS(s$(x+y*i).conjugate() returns (x-y*i).N(R(R((s/usr/lib64/python2.7/numbers.pyt conjugate�scC s t�dS(s self == otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__eq__�scC s||kS(s self != other((RR((s/usr/lib64/python2.7/numbers.pyt__ne__�s((R R RR RRRRRRRRRRRRRRR R!R"R#R%R'R(R)R*R+(((s/usr/lib64/python2.7/numbers.pyR"s0 cB s�eZdZdZed��Zed��Zd�Zd�Zed��Z ed��Z ed��Zed��Zed ��Z ed ��Zd�Zed��Zed ��Zd�ZRS(s�To Complex, Real adds the operations that work on real numbers. In short, those are: a conversion to float, trunc(), divmod, %, <, <=, >, and >=. Real also provides defaults for the derived operations. cC s t�dS(sTAny Real can be converted to a native float object. Called for float(self).N(R(R((s/usr/lib64/python2.7/numbers.pyt __float__�scC s t�dS(sGtrunc(self): Truncates self to an Integral. Returns an Integral i such that: * i>0 iff self>0; * abs(i) <= abs(self); * for any Integral j satisfying the first two conditions, abs(i) >= abs(j) [i.e. i has "maximal" abs among those]. i.e. "truncate towards 0". N(R(R((s/usr/lib64/python2.7/numbers.pyt __trunc__�scC s||||fS(s�divmod(self, other): The pair (self // other, self % other). Sometimes this can be computed faster than the pair of operations. ((RR((s/usr/lib64/python2.7/numbers.pyt __divmod__�scC s||||fS(s�divmod(other, self): The pair (self // other, self % other). Sometimes this can be computed faster than the pair of operations. ((RR((s/usr/lib64/python2.7/numbers.pyt__rdivmod__�scC s t�dS(s)self // other: The floor() of self/other.N(R(RR((s/usr/lib64/python2.7/numbers.pyt__floordiv__�scC s t�dS(s)other // self: The floor() of other/self.N(R(RR((s/usr/lib64/python2.7/numbers.pyt __rfloordiv__�scC s t�dS(sself % otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__mod__�scC s t�dS(sother % selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rmod__�scC s t�dS(sRself < other < on Reals defines a total ordering, except perhaps for NaN.N(R(RR((s/usr/lib64/python2.7/numbers.pyt__lt__�scC s t�dS(s self <= otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__le__�scC stt|��S(s(complex(self) == complex(float(self), 0)(tcomplextfloat(R((s/usr/lib64/python2.7/numbers.pyR�scC s| S(s&Real numbers are their real component.((R((s/usr/lib64/python2.7/numbers.pyR�scC sdS(s)Real numbers have no imaginary component.i((R((s/usr/lib64/python2.7/numbers.pyRscC s| S(sConjugate is a no-op for Reals.((R((s/usr/lib64/python2.7/numbers.pyR)s((R R RR RR,R-R.R/R0R1R2R3R4R5RtpropertyRRR)(((s/usr/lib64/python2.7/numbers.pyR�s cB s;eZdZdZed��Zed��Zd�ZRS(s6.numerator and .denominator should be in lowest terms.cC s t�dS(N(R(R((s/usr/lib64/python2.7/numbers.pyt numeratorscC s t�dS(N(R(R((s/usr/lib64/python2.7/numbers.pytdenominatorscC s|j|jS(sfloat(self) = self.numerator / self.denominator It's important that this conversion use the integer's "true" division rather than casting one side to float before dividing so that ratios of huge integers convert without overflowing. (R9R:(R((s/usr/lib64/python2.7/numbers.pyR,s((R R RR RR9R:R,(((s/usr/lib64/python2.7/numbers.pyRs cB s eZdZdZed��Zd�Zedd��Zed��Z ed��Z ed��Zed��Zed��Z ed ��Zed ��Zed��Zed��Zed ��Zed��Zd�Zed��Zed��ZRS(sAIntegral adds a conversion to long and the bit-string operations.cC s t�dS(s long(self)N(R(R((s/usr/lib64/python2.7/numbers.pyt__long__,scC s t|�S(s6Called whenever an index is needed, such as in slicing(tlong(R((s/usr/lib64/python2.7/numbers.pyt __index__1scC s t�dS(s4self ** exponent % modulus, but maybe faster. Accept the modulus argument if you want to support the 3-argument version of pow(). Raise a TypeError if exponent < 0 or any argument isn't Integral. Otherwise, just implement the 2-argument version described in Complex. N(R(RR$tmodulus((s/usr/lib64/python2.7/numbers.pyR%5s cC s t�dS(s self << otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt __lshift__@scC s t�dS(s other << selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rlshift__EscC s t�dS(s self >> otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt __rshift__JscC s t�dS(s other >> selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rrshift__OscC s t�dS(sself & otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__and__TscC s t�dS(sother & selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rand__YscC s t�dS(sself ^ otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__xor__^scC s t�dS(sother ^ selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__rxor__cscC s t�dS(sself | otherN(R(RR((s/usr/lib64/python2.7/numbers.pyt__or__hscC s t�dS(sother | selfN(R(RR((s/usr/lib64/python2.7/numbers.pyt__ror__mscC s t�dS(s~selfN(R(R((s/usr/lib64/python2.7/numbers.pyt __invert__rscC stt|��S(s float(self) == float(long(self))(R7R<(R((s/usr/lib64/python2.7/numbers.pyR,xscC s| S(s"Integers are their own numerators.((R((s/usr/lib64/python2.7/numbers.pyR9|scC sdS(s!Integers have a denominator of 1.i((R((s/usr/lib64/python2.7/numbers.pyR:�s(N(R R RR RR;R=RR%R?R@RARBRCRDRERFRGRHRIR,R8R9R:(((s/usr/lib64/python2.7/numbers.pyR's( N(Rt __future__RtabcRRRt__all__tobjectRRtregisterR6RR7RRtintR<(((s/usr/lib64/python2.7/numbers.pyt<module>s� b _
/home/../proc/self/root/lib64/plymouth/../../../lib64/python2.7/numbers.pyc